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ABSTRACT

This paper presents an architecture for quadrature bandpass
mismatch shaping that allows the center frequency of the mis-
match suppression band to be tunable over the entire Nyquist
range. The approach is based on the previously reported
complex-valued tree-based mismatch shaper, and extends this
to allow tunable operation. The proposed design has been im-
plemented using VHDL and synthesized to logic gates. The
hardware complexity and mismatch shaping performance of
the proposed architecture are compared to that of a reference
architecture, which uses separate tunable mismatch shapers
for each complex component path. Simulation results show
consistent mismatch shaping performance across the entire
tuning range.

Index Terms— Bandpass Delta-Sigma; Quadrature
Delta-Sigma; Mismatch Shaping; Tunable Delta-Sigma;
DAC Element Matching; Unit Element DAC

1. INTRODUCTION

1 Modern wireless systems are facing a proliferation of wire-
less standards, making it necessary to maximize hardware re-
configurability in order to minimize costs. In addition, the
continued scaling of CMOS technology has led to greater de-
grees of chip integration between the analog radio frequency
(RF) front-ends and the digital signal processing (DSP) back-
ends. As a result, it is far more attractive to process the
intermediate frequency (IF) signal directly within the digi-
tal domain. Due to their high linearity over narrow band-
widths, bandpass delta-sigma (∆Σ) modulators are rapidly
becoming the data converter of choice for these applications
[2][3][4][5][6].

In a typical low-IF receiver architecture, the RF signal is
first demodulated into a complex IF signal, which consists
of the in-phase (I) and quadrature (Q) component signals.
Subsequently, these component signals are individually dig-
itized using a pair of bandpass∆Σ modulators, as shown

1This is an expanded version of a paper presented at the 2010 SiPS con-
ference [1].

(a) Separate BP-∆Σ ADCs

(b) Quadrature BP-∆Σ ADC

Fig. 1. Low-IF bandpass∆Σ receiver architecture

in Figure 1(a). One complication arising from the use of
this method is the potential for path mismatch between theI

and theQ channels, which leads to performance degradation
[7][8]. This architecture can be improved by using a single
complex-valued or quadrature bandpass (QBP)∆Σ modula-
tor, as shown in Figure 1(b) [7].

Higher-order∆Σ analog-to-digital converters (ADC) can
provide a much higher signal-to-noise ratio (SNR), for a given
oversampling ratio (OSR), by using a multibit internal quan-
tizer [9]. However, performance is limited due to distortion
caused by device mismatch errors when the quantized signals
emerge from the DAC embedded within the∆Σ ADC feed-
back loop. In order to reduce these nonlinearities in the DAC
transfer function, the DAC element mismatch errors can be
randomized or spectrally shaped away from the signal band
using a mismatch shaper [10][9][11].

Although mismatch shaping reduces DAC nonlinearity
within the signal band, it fails to eliminate the overall linear
gain error through the DAC. In a quadrature bandpass∆Σ
modulator, using separate DACs for theI and Q compo-



Fig. 2. Unit-element DAC with element selection logic

nents of the quantized complex signal can lead to severe path
mismatch due to the differing gain errors through each path.
However, the two real-valued DACs can be combined into a
single mismatch shaping complex DAC. This leads to identi-
cal gain errors in theI andQ paths, and thereby eliminates
I/Q path mismatch through the DAC itself [12][13].

An important feature of data converters used in multi-
standard wireless transceivers is the ability to place the center
of the signal-band at different frequencies within the Nyquist
band, according to the requirements placed by the system
design, as well as the particular wireless standard in use.∆Σ
data converters can easily be designed with programmable
loop filter coefficients in order to achieve this. However,
∆Σ modulators employing multibit quantization still re-
quire the mismatch noise to be removed or noise-shaped
away from wherever the signal-band has been placed. This
can be achieved with the use of a tunable mismatch shaper
[4][14][15].

In the case of a quadrature bandpass∆Σ modulator em-
ploying a multibit quantizer, the center-frequency of the mis-
match suppression band through a mismatch shaping com-
plex DAC needs to be tunable. This paper extends previously
known mismatch shaping techniques to enable such a feature.

Section 2 provides an overview of quadrature bandpass
mismatch shaping, along with previously reported techniques.
Section 3 describes the proposed tunable mismatch shaping
technique, followed by the hardware implementation in Sec-
tion 4. Hardware complexity and mismatch shaping perfor-
mance of the proposed architecture are compared to those of
a reference architecture in Section 5. The paper is concluded
in Section 6.

2. MISMATCH SHAPING

A unit-element DAC is commonly used in multibit∆Σ sys-
tems. It consists ofM unit-sized elements that can be com-
bined to generateM + 1 different output levels, as shown in
Figure 2. The element-selection logic (ESL) converts the bi-
nary DAC input to a vector of single-bit controls to the unit-
element DACs,x[n] =

∑M

k=1
xk[n], wherexk[n] ∈ {0, 1}

The DAC output is similarly formed by summing the out-

puts of all the DAC elements,y[n] =
∑M

k=1
yk[n], where

yk[n] = ∆xk[n] and∆ denotes the nominal step-size of each
DAC element.

Unfortunately, component mismatch due to non-idealities
in the manufacturing process leads to non-ideal values for
each of the DAC elements. As a result, each DAC element
exhibits errors in the output levels:

yk[n] =

{

∆+ ǫhk
if xk[n] = 1

ǫlk if xk[n] = 0
(1)

whereǫhk
andǫlk denote the static mismatch error when the

DAC element is enabled and disabled, respectively. The over-
all DAC output is given by:

y[n] = αx[n] + β + ǫ[n], (2)

whereα, β andǫ are the gain error, offset error and aggregate
mismatch error, respectively, and all three quantities depend
exclusively on the element mismatch errors [16].

Generally during element selection, there are multiple
ways in which the inputx[n] can be used to select DAC ele-
ments to form the output,y[n]. These additional degrees of
freedom can be exploited to vary the pattern of unit element
selection in a way that spectrally shapes the mismatch error
away from the signal-band [10][16]. This is known as mis-
match noise shaping, and is achieved without changing the
actual number of selected DAC elements from the number
that need to be activated in order to reproduce a given DAC
input.

2.1. Quadrature Path Mismatch

In a quadrature bandpass∆Σ modulator, both theI andQ
components of the quantized complex signal require a DAC.
In addition to the mismatch noise componentǫ[n], differences
between mismatch errors in the two DACs results in path mis-
match:

yI [n] = αIxI [n] + βI + ǫI [n] (3)

yQ[n] = αQxQ[n] + βQ + ǫQ[n] (4)

The composite DAC output is thus given by:

y[n] =
αI + αQ

2
x[n] +

αI − αQ

2
x∗[n] + β + ǫ[n] (5)

where:

y[n] = yI [n] + jyQ[n] (6)

β = βI + jβQ (7)

ǫ[n] = ǫI [n] + jǫQ[n] (8)

As a result, any gain mismatch (αI 6= αQ) will lead to fold-
ing from the negative frequency image band to the positive
frequency signal band. Since the∆Σ modulator loop filter



Fig. 3. QBP-∆Σ ADC with complex DAC

is asymmetric, i.e., there is little or no noise shaping in the
image band, gain mismatch results in a higher quantization
noise within the signal band.

The two real-valued DACs can be combined into a single
mismatch shaping complex DAC, as shown conceptually in
Figure 3. This allows both paths to use all available DAC el-
ements in the process of shaping the mismatch noise. As a
result, the combined DAC eliminates path mismatch by pro-
ducing equal gain errors in theI andQ paths (αI ≡ αQ),
as described in [13] and [17]. This is the key advantage to
using a quadrature mismatch shaping DAC, but comes at the
expense of increased hardware complexity.

2.2. Quadrature Mismatch Shaping

A mismatch shaping scheme for complex DACs has been
proposed in [12]. This method generalizes the basic vector-
based mismatch shaper from [10] to complex-valued signals.
This technique is realized by implementing the mismatch
shaper loop filter in complex arithmetic and allowing the
vector quantizer to take values from{0, 1, j}. The tech-
nique requires overly complicated hardware that results in
reduced mismatch suppression. A complex butterfly shuf-
fler mismatch shaping DAC is considered in [17]. This is
an extension of previously reported methods used to whiten
or shape the mismatch noise [18]. These methods require a
higher level of hardware complexity than the tree-structured
approach [17].

2.3. Tunable Mismatch Shaping

A novel technique for performing tunable mismatch shaping
on real signals has been proposed in [14]. This technique
relies upon the generalizedN -path filter principle in con-
junction with a prototype mismatch shaper to replicate the
mismatch transfer functionN times around the unit circle.
By using the well-known data-weighted averaging (DWA)
technique, a hardware-efficient first-order tunable mismatch
shaper can be realized [15]. However, when applied to
quadrature signals, DWA mismatch shaping exhibits lower
levels of performance [12]. The technique proposed in this
paper extends the tree-based complex mismatch shaper from
[17] so as to allow control over the center frequency of the
mismatch transfer function.

Fig. 4. Tree-structured element selection logic

3. PROPOSED TUNABLE TECHNIQUE

The mismatch shaper used in this work is largely based on the
tree-based approach described in [16] and adapted to handle
complex signals as described in [17]. Figure 4 shows an ex-
ample of aM + 1 level DAC, with M = 8, using the tree
structure to perform element selection. Each of the blocks la-
beledSk, r is a switching block that routes the input data in
two possible directions. There arelog2M layers of switching
blocks. Each switching block operates according to

xk−1,2r−1[n] =
1

2
(xk,r[n] + sk,r[n]) (9)

xk−1,2r[n] =
1

2
(xk,r[n]− sk,r[n]) (10)

wheresk,r[n] is a switching sequence generated within each
switching block. The value of the switching sequencesk,r[n]
at each sample intervaln dictates what portion of the in-
put dataxk,r[n] is routed through each of the outputs of the
switching block [16].

As the input travels through the tree, portions of the in-
put data word are spread across the branches of the tree until
they arrive at the unit-DACs, where only a single bit deter-
mines whether or not the DAC element is selected for activa-
tion. In the case of quadrature mismatch shaping, the input to
the DAC is complex-valued. Therefore, each unit-DAC out-
put yk,r[n] can produce one of three possible output values:
yk,r[n] ∈ {0, 1, j} [12][13]. The combined DAC has twice
the number of unit elements as each individualI andQ DAC,
so the total number of unit-DACs remains the same as when
using a pair of real-valued DACs.

Figure 5 shows the structure of a switching block that
implements the operations described by Equations 9−10 for
complex-valued inputs. Since the actual data must remain un-
changed from the input of the ESL block to the output, each
switching block must ensure that it generates a switching se-



Fig. 5. Switching block for complex data

Fig. 6. Complex switching sequence generator

quence that forces the output data to satisfy this condition.
This restriction is known as thenumber conservation rule
[16]. These restrictions need to be modified for the case of
quadrature signals in order to ensure that the complex data
also satisfies this number conservation rule [17].

The DAC mismatch error sequenceǫ[n] is expressed as

ǫ[n] =
∑

k

∑

r

∆k,rsk,r[n] (11)

where∆k,r is the nominal value of the unit-DAC step size.
If the switching sequencesk,r[n] is generated as anLth-order
noise-shaped sequence, uncorrelated with the switching se-
quences in the other switching blocks, this will result in an
Lth-order noise-shaped DAC mismatch error sequence [16].
It follows that in order to gain control over the center fre-
quency of the mismatch transfer function, there needs to be
a way to control the center frequency of the noise shaping
function within each switching sequence generator.

Figure 6 shows the structure of a complex-valued se-
quence generator. The noise shaping is achieved by employ-
ing a zero-input∆Σ modulator, with a complex loop filter.
The complex-valued number conservation rule is enforced
by the quantizer and limiter blocks [17]. The order and fre-
quency location of the noise shaping function are determined
by the complex loop filter. Therefore, a tunable mismatch
shaping function can be achieved by simultaneously control-
ling the complex loop filters in all the switching blocks.

Fig. 7. Tunable1st-order complex loop filter

4. HARDWARE IMPLEMENTATION

In this section, comparisons are made between the hardware
complexity of the proposed technique and a reference archi-
tecture. The latter is a conventional implementation using
a pair of real-valued tunable bandpass mismatch shaping
DACs. These techniques extend the complex-valued tree-
based mismatch shaper from [17] and the real-valued tree-
based mismatch shaper from [16] in such a way that allows
control over the center frequency of the mismatch transfer
function.

As described in the previous section, each switching block
in the mismatch shaping tree contains a sequence generator.
The sequence generator shown in Figure 6 is essentially a
zero-input∆Σ modulator, and forms the heart of the proposed
implementation. There are three parts to the sequence gener-
ator: (i) a tunable complex loop filter, (ii) a quantizer for each
of theI andQ paths, and (iii) a complex limiter.

4.1. Tunable Complex Loop Filter

The loop filter within the switching sequence modulator is
implemented as a tunable complex filter, with the center fre-
quency tuned to the center frequency of the desired signal
band. The structure of a tunable first-order complex filter
is shown in Figure 7, whereωc is the center frequency of
the signal band,0 ≤ ωc ≤ π, and[Ix, Qx] and [Iy, Qy] are
the complex-valued input and output vectors of the loop fil-
ter. The core of this unit is a rotation unit whose operation is
described by:
[

Iy
Qy

]

= z−1

[

cosωc − sinωc

sinωc cosωc

] [

Iy − Ix
Qy −Qx

]

(12)

In order to simultaneously tune the loop filters of all the
switching sequence generators, the same complex coefficients
must be provided to alllog2M switching blocks and their
loop filters. The filter coefficients associated with each tuning
setting can be stored in a lookup-table or read-only memory
(ROM), and indexed by the tuning frequency.
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Fig. 8. Coefficient values over the entire tuning range

Figure 8 shows the coefficients plotted over the entire
tuning range. Since the coefficients are essentially the sine
function computed at the tuning frequency, the storage re-
quirements can be reduced by taking advantage of the natural
quadrant-symmetry exhibited by the sine wave. The second
quadrant of the sine function can be reproduced from the first
quadrant of the sine by inverting the phase. The first quad-
rant of the cosine function is identical to the second quadrant
of the sine function, and the second quadrant of the cosine
function can be reproduced from the first quadrant of the sine
function by inverting the polarity.

The size of the ROM can be further reduced by using a di-
rect digital frequency synthesizer (DDFS), such as one using
polynomial interpolation [19]. Alternatively, the coefficients
can be computed using existing hardware from elsewhere in
the wireless system. Most modern transceiver systems in-
clude a DDFS, which can be borrowed for a few cycles in
order to compute the pair of coefficients. The coefficients
would only need to be re-computed when the location of the
signal band center frequency is changed.

4.2. Path Quantizer

As described in Section 3, each switching block in the tree
must satisfy a restriction known as thenumber conservation
rule [16]. The restriction is imposed in order to ensure that
data remains unchanged between the input and the output
of the overall tree, and hence the ESL block (shown in Fig-
ure 2). This restriction can be transferred from the overall
tree to each switching block by ensuring that the two outputs
of each switching block always add up to equal the value of
the switching block input.

Within each switching block, the sequence generator pro-
duces a number that is used to create the two switching block
outputs, as shown in Figure 5. The sequence output is first
simultaneously added to and subtracted from the switching
block input. These two results are then divided by two (or
truncated by a single LSB) before supplying them to subse-
quent switching blocks. Due to this division by two, and since
the switching block outputs cannot be allowed to take on frac-
tional values, the results of the addition and subtraction must
always be maintained as even numbers.

This condition can be satisfied by restricting the switch-

ing sequence to always be even-valued when the switching
block input data is even-valued, and vice-versa. As described
in [16], this can be achieved by selecting a mid-tread quan-
tizer when the switching block input is even, and a mid-rise
quantizer when it is odd. Since the addition and subtraction
within the switching block occurs separately for each of theI

andQ paths, it is sufficient to maintain separate quantizers for
each path. Each of the quantizers must independently choose
between mid-rise and mid-tread quantization according to the
respectiveI orQ components of the switching block input.

4.3. Complex Limiter

The purpose of the limiter is to prevent the switching block
from ever producing a negative number. In order to achieve
this, the magnitude of the sequence generator output is
forcibly limited according the switching block input data.
In the case of the combined complex sequence generator, ad-
ditional limiter constraints are needed to satisfy the number
conservation rule [17].

The operation of the limiter in the lowest layers of the
switching-block tree is shown in Table 1. The first col-
umn shows the possible switching block inputs. The mid-
dle columns show the real and complex components of the
quantizer output. The last column shows the corresponding
sequence output resulting from the combination of switching
block input and quantizer output. These sequence genera-
tor outputs guarantee that each of the two switching block
outputs take on valid control values for the complex DAC
unit-elementsk[n] ∈ {0, 1, j}.

There are a few input combinations where two different
output sequence values can produce the same valid complex
switching block outputs. These cases are shown in Table 1,
indicated with a pair of possible output sequence options. In
the proposed technique, whenever such a condition arises, the
choice between the two options is made according to the cur-
rent output of a pseudo-random sequence, which is created by
a linear-feedback shift register (LFSR).

As shown in Figures 4−6, the combinatorial logic path
connecting the DAC input to the DAC unit-element output
contains every single quantizer and limiter block in the mis-
match shaping tree. This path can be pipelined in order to
shorten the critical path for high speed operation. However,
pipelining creates additional clock cycle delays through the
DAC, and any increase in this delay can pose modulator sta-
bility problems when these DACs are employed within the
modulator feedback loop of a∆Σ ADC [9]. It is therefore
beneficial to minimize the complexity of all limiter blocks.

The limiter at the lowest switching levels need to be as
complex as described by Table 1, in order to ensure that the
combined complex output is a valid control for the individ-
ual complex DAC elements. However, the limiters in the up-
per levels need only satisfy the number conservation rule. It
is possible to reduce the complexity of the limiters used in



Table 1. Limiter table for the lowest layer of the tree

Input Re{Quan} Im{Quan} Sequence Output
0 X X 0
2 X X 0
2j X X 0
1 0 X 1,−1
1 + X 1
1 − X −1
j X 0 j,−j

j X + j

j X − −j

1 + j 0 0 1− j,−1 + j

1 + j 0 + −1 + j

1 + j 0 − 1− j

1 + j + 0 1− j

1 + j − 0 −1 + j

1 + j + − 1− j

1 + j − + −1 + j

1 + j + > + 1− j

1 + j − > − 1− j

1 + j + < + −1 + j

1 + j − < − −1 + j

1 + j + = + 1− j,−1 + j

1 + j − = − 1− j,−1 + j

the upper layer switching blocks by drastically simplifying
the limiter rules. In the proposed technique, the switching
sequences generated by all switching blocks are limited to
producingI andQ values from the ranges{−1, 0, 1} and
{−j, 0, j}, respectively. This effectively places tighter con-
straints on values allowed in the switching sequence output.

Table 2 shows the operation of the simplified limiter used
in all switching blocks in the upper layers of the tree. The ta-
ble applies to bothI andQ paths. The first column shows the
switching block inputs as either even or odd. The second col-
umn shows the possible quantizer outputs. The third column
shows the corresponding sequence output resulting from the
combination of switching block input and quantizer output.

Table 2. Limiter table for all upper layers of the tree

Input Data Quantizer Output Sequence Output
even 0 0
even + 0
even − 0
odd 1 1
odd −1 −1
odd > 1 1
odd < −1 −1

Simulation results have shown that using this highly con-

strained limiter for upper layer switching blocks does not sig-
nificantly reduce mismatch noise suppression in the signal
band. The advantages of using such a scheme extend beyond
the hardware savings within the limiter blocks: the range of
possible sequence values fed back into the loop filter now take
on essentially trivial values, thereby reducing the hardware
complexity of the initial stages of the loop filter.

4.4. Simulation of Tunable Operation

A ∆Σ modulator can be used either as an analog-to-digital
converter (ADC) or a digital-to-analog converter (DAC). Ina
∆Σ ADC, the quantizer is itself an ADC, but with a far lower
precision than the overall ADC. A correspondingly coarse
DAC is required within the modulator loop in order to pro-
vide feedback, as shown in Figure 3. In a∆Σ DAC, the entire
modulator loop remains in the digital domain, including the
coarse quantizer. However, the quantized signal still needs to
be converted to an analog signal and thus requires a coarse
DAC at the output. In either case, the use of a mismatch-
shaping complex DAC as the coarse DAC provides the same
benefit of suppressing non-linearities within the band of inter-
est [9].

In this section, the tunable quadrature mismatch shaper is
simulated using data generated by a programmable quadra-
ture bandpass∆Σ modulator, whose specifications are given
in Table 3. The tunable modulator noise-transfer function
places three poles in the signal band, and one in the corre-
sponding image band, resulting in a4th-order modulator. An
oversampling ratio (OSR) of128 allows coverage of the en-
tire Nyquist band using just64 tuning settings, resulting in a
normalized signal bandwidth as specified in Table 3.

Table 3. Quadrature BP∆Σ modulator specifications

Modulator order 4
OSR 128
DAC elements 16
Tuning settings 64
Normalized signal bandwidth 0.0078π

The 16-element DAC employs complex unit elements, as
described in [12]. The sequence generators in the mismatch
shaper tree all use the tunable1st-order complex filter shown
in Figure 7, tuned to the same frequency setting. The DAC
mismatch errors are modeled as uniformly distributed random
mismatch, with a standard deviation of3% of a single unit
element value.

To illustrate the operation of the tunable quadrature
mismatch shaper, Figure 9 shows the frequency spectra at
three different signal band tuning frequencies, centered at
(a) 0.1875π, (b) 0.2812π, and (c) 0.3750π. Each figure
shows three distinct frequency responses. The ideal response
is labeledno mismatch, and corresponds to that of a complex



DAC without any mismatch errors, where performance is
limited only by the tunable bandpass∆Σ modulator itself.
The unshaped response is when random mismatch is added
to the DAC, but no mismatch shaping is performed. In this
case, the element selection for each path is performed using
a simple thermometer code. Theshaped response is when
mismatch is added and mismatch noise shaping is performed
using the proposed technique.

Figure 10 shows the zoomed-in views of each correspond-
ing signal-band. These simulations are with a specific con-
figuration of randomly-generated DAC errors. The in-band
SNR shows a variation across frequency due to a combina-
tion two distinct effects: (1) the variation of ideal modulator
performance at the specific tuning frequency, and (2) the in-
band spurious tones generated by those particular randomly-
generated DAC mismatch errors. The next section presents
simulation results for a wider set of randomly-generated DAC
mismatch errors.

5. COMPARISON

In this section, the hardware complexity and mismatch shap-
ing performance of the proposed architecture is compared toa
reference architecture. The latter is a conventional implemen-
tation using a pair of real-valued tunable bandpass mismatch
shaping DACs, as described in [16], and extended to provide
tunable operation over the Nyquist range.

Table 4 compares the structures of the mismatch shaping
trees used in the two mismatch shaper architectures for 16-
element complex DACs. It is evident that the proposed archi-
tecture will necessarily occupy a larger chip area because of
the extra switching node, as well as the larger complex-valued
switching nodes.

Table 4. Specifications of reference and proposed designs

Architecture REF. PROP.

Total DAC unit elements 16 16
Max. elements for eachI/Q path 8 8
Number of tree structures 2 1
Number of switching nodes/tree 7 15
Total number of switching nodes 14 15
Type of switching node data Real Complex

Despite the increased hardware complexity, the primary
motivation for using the mismatch shaping complex DAC re-
mains intact: the elimination of gain mismatch between the
I/Q paths, which is achieved by definition with the decision
to employ a combined mismatch shaping complex DAC in the
first place [12][13][17].

The reference and proposed architectures for tunable
bandpass mismatch shaping have been implemented using
VHDL for coarse DAC sizes ranging from2− 128 unit DAC
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Fig. 9. Full spectrum with 3% mismatch error
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Fig. 10. Signal band detail with 3% mismatch error
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Fig. 11. Hardware complexity for different DAC widths

elements These are typical values as found in the literature.
The data-path and coefficient widths in all architectures have
been selected such that the in-band SNR performance of
the two architectures is roughly equivalent at each tuning
setting, across the entire tuning range. The designs for each
DAC precision have been synthesized using Synopsys Design
Compiler [20] under the conditions specified in Table 5.

Table 5. Hardware synthesis conditions

Process 0.18µm CMOS
Device corners slow-NMOS / slow-PMOS

Voltage 1.62V
Temperature 125oC
Clock speed 100MHz

Logic synthesis results for several DAC sizes are shown
in Figure 11. The reference architecture is labeleddual tree,
and the proposed architecture is denotedcomplex tree. As is
expected, the proposed quadrature structure requires a greater
area than the conventional twin path structure, for all DAC
sizes. However, the complex tree structure completely elimi-
nates the gain mismatch between the two paths.

Each architecture has been simulated using data generated
by a tunable4th-order quadrature bandpass∆Σ modulator
whose specifications are shown in Table 3. Figure 12 plots
the in-band SNR when applying a full-scale complex-valued
sinusoid with a frequency randomly selected from within the
signal band. This is repeated for each tuning setting across
the entire tuning range, and results are shown for mismatch
errors with (a)1%, (b) 2%, and (c)3% standard deviation.

In each figure, the SNR withno mismatch is that of a
DAC without any mismatch errors, where the performance
is limited by the tunable bandpass∆Σ modulator specified
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(a) SNR with 1% mismatch error
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(b) SNR with 2% mismatch error
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(c) SNR with 3% mismatch error

Fig. 12. SNR across tuning range with single-tone input

in Table 3. Theunshaped SNR is the response when mis-
match is added, but no shaping is performed. In this case,
the element selection is performed using a simple thermome-
ter code. Theshaped SNR is the response when mismatch
is added and mismatch shaping is performed using the corre-
sponding shaper. In all figures, the proposed tunable shaperis
denoted byshaped complex tree while the conventional tun-
able shaper is denoted byshaped dual tree. Each data-point
corresponds to the SNR average computed for a thousand dif-
ferent randomly-generated DAC mismatch configurations.

The mismatch-shaped performance shows consistent im-
provement over the unshaped performance, for the entire tun-
ing range. For the sake of comparison, the performance of the
reference and proposed architectures have been designed to
be roughly equivalent in order to compare the hardware com-
plexity overhead of eliminating the gain mismatch between
theI andQ paths. This performance equivalence is achieved
by appropriately reducing data-path and coefficient widths.

6. SUMMARY AND CONCLUSION

Wireless transceivers are increasingly employing quadrature
bandpass∆Σ data converters in applications where high lin-
earity is required over a narrow bandwidth. The dynamic
range of a∆Σ data converter can be improved by using a
multibit quantizer in the modulator loop. However, device
mismatch errors in the multibit DAC cause distortion that has
a direct impact on the effective modulator performance. Mis-
match shaping is an established technique for alleviating the
effects of mismatch errors, but previously reported techniques
for mismatch shaping DACs require the signal band be lo-
cated at a fixed frequency. Multi-standard wireless systems
can benefit from the ability to place the center of the sig-
nal band at arbitrary frequency locations within the Nyquist
range of the oversampled data converter. This requires that
the quadrature mismatch shaper also retain the ability to arbi-
trarily select the frequency location of the mismatch suppres-
sion band. In a quadrature bandpass∆Σ modulator, using
separate DACs for theI/Q components of the quantized com-
plex signal can lead to path mismatch due to the differences
in the gain through each DAC path. Using a single complex-
valued mismatch shaping DAC instead of a pair of real-valued
DACs effectively eliminates theI/Q path mismatch through
the coarse DAC itself. This paper extends previously known
quadrature mismatch shaping techniques to enable the center
frequency of the mismatch noise-transfer function to be tun-
able over the entire Nyquist range.

The proposed design has been implemented for different
DAC widths, using VHDL to model the hardware. The limiter
in upper layer switching blocks has been simplified in order
to reduce the path delay from input to output, as well as to
lower the overall hardware complexity. In order to evaluate
the hardware complexity overhead of the proposed approach,
a reference architecture utilizing a pair of real-valued tunable



mismatch shapers has also been implemented with the same
specifications. All architectures have been synthesized into
logic gates and results show a consistent increase in the hard-
ware complexity as compared to the conventional approach,
for the same level of mismatch shaping performance. By def-
inition, the quadrature mismatch shaper eliminates path mis-
match through the course DAC, and simulation results show
consistent in-band SNR performance over the entire tuning
range.
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